ROS-mediated cytotoxic effect of copper(II) hydrazone complexes against human glioma cells.

نویسندگان

  • Angel A Recio Despaigne
  • Jeferson G Da Silva
  • Pryscila R da Costa
  • Raquel G Dos Santos
  • Heloisa Beraldo
چکیده

2-Acetylpyridine acetylhydrazone (H2AcMe), 2-benzoylpyridine acetylhydrazone (H2BzMe) and complexes [Cu(H2AcMe)Cl2] (1) and [Cu(H2BzMe)Cl2] (2) were assayed for their cytotoxicity against wild type p53 U87 and mutant p53 T98 glioma cells, and against MRC-5 fibroblast cells. Compounds 1 and 2 proved to be more active than the corresponding hydrazones against U87, but not against T98 cells. Compound 1 induced higher levels of ROS than H2AcMe in both glioma cell lines. H2AcMe and 1 induced lower levels of ROS in MRC5 than in U87 cells. Compound 2 induced lower levels of ROS in MRC5 than in T98 cells. The cytotoxic effect of 1 in U87 cells could be related to its ability to provoke the release of ROS, suggesting that the cytotoxicity of 1 might be somehow p53 dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular study on copper-mediated tumor proteasome inhibition and cell death.

The metal ion copper is a cofactor essential for maintaining normal biological and physical functions in human beings. High copper levels have been found in variety of tumor tissues and are involved in tumor angiogenesis processes. The ubiquitin-proteasome system plays an important role in cell growth and apoptosis and has been shown as a novel target for cancer therapy. We previously reported ...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Synthesis, Characterization, Antimicrobial and Antiproliferative Activity Evaluation of Cu(II), Co(II), Zn(II), Ni(II) and Pt(II) Complexes with Isoniazid-Derived Compound.

Hydrazone complexes of Cu(II), Co(II), Zn(II), Ni(II) and Pt(II) with N-isonicotinoyl-N'-(3-metoxy-2 hydroxybenzaldehyde)-hydrazone (HL) were synthesized and characterized by different physico-chemical techniques including elemental and thermal analysis, magnetic susceptibility measurements, molar electric conductivity, as well as IR (infrared), ¹H-NMR and 13C-NMR (hydrogen and carbon nuclear m...

متن کامل

Potentially cytotoxic new copper(II) hydrazone complexes: synthesis, crystal structure and biological properties.

A new set of penta-coordinated copper(II) hydrazone complexes containing solvated methanol were synthesized by reacting the hydrazone ligands, 2-acetylpyridine benzoyl hydrazone (HL1) and 2-acetylpyridine thiophene-2-carboxylic acid hydrazone (HL2), with [CuCl2(DMSO)2] and characterized by different spectral methods. Single crystal X-ray diffraction studies of the complexes revealed that both o...

متن کامل

Synergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells

Background: Photodynamic therapy (PDT) is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs) can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA) as a photosensitizer.Methods: Human fibroblast an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2014